Epidemiology, Clinical Presentation and Management of Advanced Breast Cancer in Nigeria

Temidayo O. Ogundiran, MBBS (Ibadan), MHSc (Toronto), FRCS (Edinburgh), FWACS
Division of Oncology, Department of Surgery, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria

AND

Emmanuel R. Ezeome, MBBS (Nig), MA (Ohio), FWACS, FACS
Department of Surgery, University of Nigeria and Multidisciplinary Oncology Unit, University of Nigeria Teaching Hospital, Enugu, Nigeria
Overview

- Breast cancer burden in Nigeria
- Epidemiology of advanced breast cancer in Nigeria
- Clinical presentation of breast cancer in Nigeria
- Management of advanced breast cancer in Nigeria
Cancer burden

• Cancer remains one of the leading causes of morbidity and mortality worldwide

• By 2020, new cases of cancer in the world will increase to >15 million, with deaths increasing to 12 million \((WHO \ World \ Cancer \ Report)\)
• Much of the burden of cancer incidence, morbidity, and mortality will occur in the developing world
 – increasing life expectancy
 – part of a larger “epidemiological transition”
 – increasing risks associated with diet, tobacco, alcohol, obesity, and industrial exposures
 – already burdened by cancers some of which are attributable to infectious diseases
Cancer burden in Nigeria

• Estimated 500,000 new cases of cancer diagnosis annually (Solanke TF, 1999)

• Breast cancer presents a typical picture of the enormity of cancer burden on the Nigerian nation (Adebamowo and Ajayi, 2000)
 – increasing prevalence
 – affiliates relatively young women
 – runs an aggressive course
 – late presentation to hospital
 – bulky and scirrhous tumour
Epidemiology of advanced breast cancer in Nigeria

- peak age incidence is 42.6 years*
- mean age of 46.8± 11.5 years (of 1094 cases)**
- 12% of patients younger than 30 (0.5% in Caucasian series)
- relatively high number diagnosed during pregnancy and lactation (12% in Ibadan in 1999, Adebamowo; 26.3% in women <50 years in Zaria, Hazzan, 1995)

(*Adebamowo and Ajayi 2000, **Presented at ASCO 2008)
Epidemiology of advanced breast cancer in Nigeria cont.

• relatively high proportion of male breast cancer
 – 3.75% in Ibadan (Ihekwaba, 1994)
 – 9% in Zaria (Hazzan, 1995)
 – 3.7% in NE Nigeria (Dogo 2000)
 – 8.6% in Jos (Kidmas 2005)
 – 1.2% in Enugu (Ezeome 2008)*
 – 2.4% in Ibadan (Ogundiran 2008)*

(* Yet to be published)
Case control studies of risk factors

1. Adebamowo and Adekunle, *BJS 1999*

 Compared with the control group, cancer patients:

 • had a significant statistical difference in **height** and **weight**

 • tended to be **older** at first pregnancy and at first lactation

 • had a **higher** mean number of pregnancies

 • tended to be of an **early birth order**, to have **lactated less often**, to have **used contraceptives**, and to have **abused alcohol**
Predictors of breast cancer among premenopausal women in Nigeria, 1998–2000

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.07</td>
<td>1.04–1.10</td>
<td><0.01</td>
</tr>
<tr>
<td>Age at menarche</td>
<td>0.86</td>
<td>0.77–0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Age at first full term pregnancy</td>
<td>1.09</td>
<td>1.02–1.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Height</td>
<td>1.03</td>
<td>1.00–1.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.93</td>
<td>0.09–0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Age at menarche</td>
<td>0.89</td>
<td>0.78–1.02</td>
<td>0.08</td>
</tr>
<tr>
<td>Height</td>
<td>1.07</td>
<td>1.02–1.13</td>
<td>0.01</td>
</tr>
<tr>
<td>Weight</td>
<td>1.02</td>
<td>1.00–1.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Waist</td>
<td>1.01</td>
<td>1.00–1.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Waist–hip ratio ≤ 0.77</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>0.77 to ≤ 0.85</td>
<td>0.67–3.42</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>>0.85</td>
<td>1.21–6.45</td>
<td>0.02</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2.01</td>
<td>0.99–4.09</td>
<td>0.05</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multivariable odds ratio, 95% confidence interval and P value, in postmenopausal women in Nigeria, 1998–2000

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Adjusted Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waist–hip ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 0.77</td>
<td>1.0</td>
<td>0.68–4.19</td>
<td>0.26</td>
</tr>
<tr>
<td>>0.77 to ≤ 0.85</td>
<td>1.68</td>
<td>1.05–6.80</td>
<td>0.04</td>
</tr>
<tr>
<td>>0.85</td>
<td>2.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Ann Epidemiol 2003
Increasing height was positively associated with the risk of breast cancer among all women (OR 1.05, 1.01–1.08), pre- (1.06, 1.01–1.10) and post-menopausal women (1.07, 1.01–1.13) for each cm

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cases</th>
<th>Controls</th>
<th>OR</th>
<th>95% CI</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15 (6.00)</td>
<td>1 (0.40)</td>
<td>8.08</td>
<td>1.003, 64.95</td>
<td>0.04</td>
</tr>
<tr>
<td>No</td>
<td>235 (94.00)</td>
<td>249 (99.60)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education (≥ high school)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>136 (54.40)</td>
<td>113 (45.20)</td>
<td>1.35</td>
<td>1.04, 1.74</td>
<td>0.0205</td>
</tr>
<tr>
<td>No</td>
<td>114 (45.60)</td>
<td>137 (54.80)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at first fullterm pregnancy (>20 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>162 (77.20)</td>
<td>136 (65.07)</td>
<td>1.32</td>
<td>1.01, 1.71</td>
<td>0.0413</td>
</tr>
<tr>
<td>No</td>
<td>48 (22.8)</td>
<td>73 (34.93)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist/hip ratio (>0.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>161 (64.40)</td>
<td>117 (46.80)</td>
<td>1.98</td>
<td>1.27, 3.10</td>
<td>0.0026</td>
</tr>
<tr>
<td>No</td>
<td>89 (35.60)</td>
<td>133 (53.20)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiple conditional logistic regression comparing cases and controls
5. ASCO 2008

- Cases (160.0 ± 6.9 cm) were on average 1.2 cm taller than controls (158.8 ± 6.4 cm)
- OR of 1.20 (95% CI 1.11-1.30, p<0.001) for each 5cm increase in height
- There was marginally significant negative correlation with body weight and BMI
- Waist circumference and waist-to-hip ratio were +vely associated with risk in both pre- and post-menopausal women
Identified genetic factors

• High penetrance low freq. genes: BRCA 1 in 4% of cohorts, 74% non truncating mutation in BRCA 2

Clinical Presentation

• In the absence of a screening program, the stage at diagnosis is a reflection of the degree of awareness of the disease in the population.
Some selected features

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Institution</th>
<th>n</th>
<th>Peak age (mean)</th>
<th>Main Histological type (%)</th>
<th>Late Stage presentation (%)</th>
<th>% premenopausal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anyanwu (1987-)</td>
<td>Nnewi</td>
<td>35-39(44)</td>
<td>Invasive ductal</td>
<td>64</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Okobia (1987-1996)</td>
<td>Benin</td>
<td>177</td>
<td>(38 median)</td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Hazzan (1999)</td>
<td>Zaria</td>
<td>129</td>
<td>Invasive ductal (85)</td>
<td>88</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Adebamowo (1992-1995)</td>
<td>Ibadan</td>
<td>250</td>
<td>Invasive ductal</td>
<td>72.8</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Ikpat (1983-1999)</td>
<td>Calabar</td>
<td>300</td>
<td>Invasive ductal (80.6)</td>
<td>80.6</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>Ngadda (2001-2005)</td>
<td>Maiduguri</td>
<td>169</td>
<td>Invasive ductal(82.6)</td>
<td>80.6</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Abudu (2002-3)</td>
<td>Sagamu</td>
<td>50</td>
<td>Invasive ductal (94)</td>
<td>80.6</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>Adebamowo (2004-5)</td>
<td>Ibadan</td>
<td>192</td>
<td>Invasive ductal</td>
<td>86.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identified features of aggressive activity in Nigeria

• Young mean age (40-45yrs)
• 67 – 74% premenopausal
• 73% in stage III and IV
• 71 -77% grades 2 and 3 histology
• 22.8 - 25% ER positive
• Majority are basal-like in their intrinsic gene expression, suggesting distinct pathogenesis probably involving genes in the BRCA1-protein pathways

Immunohistochemistry in Ibadan

• Most, 65.1% of tumors were ER+, 54.7% were PR+ and 79.7% were HER2 negative

• Majority of the tumors, 77.6% were luminal type A, 2.6% were luminal type B, 15.8% were basal type and the remaining 4.0% were HER2+/ER- subtype

there was significant association between the grade of the tumor and the estrogen receptor status \((p=0.04)\)

there was no association between the HER2 status and grade of tumor \((p=0.54)\)
Common sites of metastatic disease presenting clinically

- chest
 - pleura, with effusion and respiratory distress
 - lung parenchyma
 - ribs, sternum, scapular
- bones
 - long bones, with pain, pathological fracture
 - spinal cord compression leading to paraparesis and paraplegia
 - pelvic bones
- brain
- liver
Diagnosis and staging of breast cancer in Nigeria

• Typical investigations
 – Biopsy and tissue diagnosis
 – CXR and other x-rays as necessary
 – Abdominal ultrasound scan
 – Radionuclide scan
 – ER/PR test post histology (often use biopsy specimen)
 – Blood work up: FBC, E/U, ?LFT
 – (Mammography, Breast ultrasound scan)
Diagnosis and staging of breast cancer in Nigeria

• Use of TNM staging recommended

• Limited use of CT, mammography, flow cytometry, Frozen section histology

• Late stage at presentation makes Lymphatic basin mapping and sentinel node biopsy useless
Staging of advanced breast cancer in Nigeria

• Locally advanced: Stages IIIA, IIIB and IIIC

• Metastatic disease: Stage IV
Treatment of breast cancer in Nigeria

• Modalities include
 – surgery
 – radiation treatment
 – chemotherapy
 – hormonal manipulation
 – targeted treatment
 – Palliative/ supportive care.
Surgery for advanced breast cancer in Nigeria

• Mastectomies still predominate
 – Simple mastectomy
 – Axillary clearance may be added
 – Occasional radical mastectomy

• BCT for metastatic cases with small volume breast disease or (post neoadjuvant).
 – QUART
 – LART
Incomplete mastectomy
Breast Radiation treatment in Nigeria

• Most of our patients need RTH b/c of heavy disease load on the breast & metastasis.
• Facilities few, unevenly distributed, old.
• Co 60: UCH, EKOH, ABUTH (Gombe, RADMED)
• Linear accelerator: Abuja, (LUTH, UNTH)
• Brachytherapy: non
• Radiation in BCT: Scheduling issues and need for prior planning/discussion
Chemotherapy

• Some state of the arts drugs can be sourced
• First line drugs in the leading centers remain Doxorubicin/Epirubicin based
• The most active drugs (Taxols, herceptin) are extremely costly
• Who gets it: premenopausal patients, ER/PR negative post menopausal, ER/PR +ve post menopausal if they fail hormonal treatment.
Breast cancer chemotherapy: some commonly used regimes in Nigeria

• FAC: Day 8 of 5FU may be problem, allows lower dose of doxorubicin
• AC: easier to follow, high dosing for doxorubicin, Epirubicin more costly
• CMF: should be classical regime to be useful. Cumbersome to follow
• AT: most effective but very costly
• 1st line and 2nd line drugs
Chemotherapy for breast cancer in Nigeria: assessing and preparing patients

• Overall assessment of performance status, quality of life

• FBC, E/U

• 2D Echo (ECG).

• Counseling on cytotoxic side effects and measure to prevent/control them

• Dosages should be adequate (use BSA)
Breast Cancer in Nigeria – Hormonal Manipulation

• More of our patients are premenopausal

• Current evidence suggest that ER/PR positivity rate in Nigerians is the same as in western countries

• ER/PR test facilities are few and scattered and most use archival tissues which accounts for the hitherto low positivity rates in our populations

• Premenopausal: Tamoxifen &/or Oophrectomy, LHRH analogues

• Post menopausal: tamoxifen, anastrozole, exemesthane
Targeted therapies

- trastuzumab limited by cost and Her2 neu assay (available now at UCH)

- Biphosphonates: Zoledronic acid, palmidronate, etc
Treatment approaches in locally advanced breast cancer in Nigeria

- Neoadjuvant systemic treatment
 - Allows down staging
 - Selects poor prognosis ones for post op radiation dose intense or cross over systemic treatment

- Mastectomy with post op systemic treatments and radiation (avoid if possible)
Treatment approaches in metastatic breast cancer in Nigeria

• Principles of treatment:
 – Improve quality of life
 – Disease control for as long as possible

• approaches:
 – Primary systemic treatments
 – Targeted surgery and or radiation for metastatic sites/manifestations
 – Symptom palliation, supportive care
Metastatic disease treatment

- Pleural effusion
- Dyspnea from lung disease
- Bone metastasis/ pathological fracture
- Spinal cord compression
- Brain metastasis
Supportive drugs/palliative care

• Pain relief: use of opiates, NSAIDs, etc
• Antiemesis: HT$_3$ antagonists, high dose metclopromide etc
• colony stimulating factors for severe neutropenia
• **Involve palliative care team from diagnosis**
• Dedicated oncology nursing: dressings etc
• Family support
• Pastoral/spiritual care
Supportive and palliative care

• Psychosocial burden of care
 – Financial burden more problematic than the adverse effect of caring on family routines

 – Most family relationships remain intact, no perceived social stigma

 – Overall feeling of burden was significantly predicted by family financial distress and disruption of family routines.

 • Ohaeri et al 1999
Survival and follow up

- Historically been poor in Nigeria

- Follow up records in UNTH 2001:
 - 29.2% were followed up for 1 year, 25% mortality
 - 10.5% for 2 years and 4.12% for 3 years

- Are we helping the patients? – a need for long term survival studies in Nigeria
Thank you